Study of a New Asymptotic Preserving Scheme for the Euler System in the Low Mach Number Limit

نویسندگان

  • Giacomo Dimarco
  • Raphaël Loubère
  • Marie Hélène Vignal
چکیده

This article deals with the discretization of the compressible Euler system for all Mach numbers regimes. For highly subsonic flows, since acoustic waves are very fast compared to the velocity of the fluid, the gas can be considered as incompressible. From the numerical point of view, when the Mach number tends to zero, the classical Godunov type schemes present two main drawbacks: they lose consistency and they suffer of severe numerical constraints for stability to be guaranteed since the time step must follow the acoustic waves speed. In this work, we propose and analyze a new unconditionally stable an consistent scheme for all Mach number flows, from compressible to incompressible regimes, stability being only related to the flow speed. A stability analysis and several one and two dimensional simulations confirm that the proposed method possesses the sought characteristics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Weakly Asymptotic Preserving Low Mach Number Scheme for the Euler Equations of Gas Dynamics

We propose a low Mach number, Godunov-type finite volume scheme for the numerical solution of the compressible Euler equations of gas dynamics. The scheme combines Klein’s non-stiff/stiff decomposition of the fluxes (J. Comput. Phys. 121:213-237, 1995) with an explicit/implicit time discretization (Cordier et al., J. Comput. Phys. 231:56855704, 2012) for the split fluxes. This results in a scal...

متن کامل

An all-speed asymptotic-preserving method for the isentropic Euler and Navier-Stokes equations

The computation of compressible flows becomes more challenging when the Mach number has different orders of magnitude. When the Mach number is of order one, modern shock capturing methods are able to capture shocks and other complex structures with high numerical resolutions. However, if the Mach number is small, the acoustic waves lead to stiffness in time and excessively large numerical visco...

متن کامل

Multiple Pressure Variable (mpv) Approach for Low Mach Number Flows Based on Asymptotic Analysis

SUMMARY An asymptotic analysis of the compressible Euler equations in the limit of vanishing Mach numbers is used as a guideline for the development of a low Mach number extension of an explicit higher order shock capturing scheme. For moderate and large Mach numbers the underlying explicit compressible ow solver is active without modiication. For low Mach numbers, the scheme employs an operato...

متن کامل

Asymptotic preserving IMEX finite volume schemes for low Mach number Euler equations with gravitation

In this paper we will present and analyse a new class of the IMEX finite volume schemes for the Euler equations with a gravity source term. We will in particular concentrate on a singular limit of weakly compressible flows when the Mach number M ≪ 1. In order to efficiently resolve slow dynamics we split the whole nonlinear system in a stiff linear part governing the acoustic and gravity waves ...

متن کامل

An Asymptotic-Preserving all-speed scheme for the Euler and Navier-Stokes equations

We present an Asymptotic-Preserving ’all-speed’ scheme for the simulation of compressible flows valid at all Mach-numbers ranging from very small to order unity. The scheme is based on a semi-implicit discretization which treats the acoustic part implicitly and the convective and diffusive parts explicitly. This discretization, which is the key to the Asymptotic-Preserving property, provides a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2017